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THE AXISYMMETRIC STATIC PROBLEM OF
THERMOELASTICITY FOR A MULTILAYERED CYLINDERY

Yu. M. KorLyano (dec.), B. V. PRoTsyuk and V. M. SINYuTA
L'vov

(Received 24 September 1990)

A method of solving the axisymmetric static problem of thermoelasticity based on the use of generalized
functions is proposed for a multilayered unbounded solid cylinder free of external loads, through whose
surface convective heat exchange occurs with a variable heat transfer coefficient.

1. EQUATIONS WITH DISCONTINUOUS AND SINGULAR COEFFICIENTS OF THE TWO-
DIMENSIONAL STATIC PROBLEM OF THERMOELASTICITY OF MULTILAYER
CYLINDERS

ConsIDER a cylinder of circular transverse cross-section, free from external loads, composed of an
arbitrary number of concentrically distributed layers with different physical and mechanical
characteristics. The cylinder is heated by convective heat transfer from the surrounding medium of
variable temperature. We will assume that the cylinders are in ideal thermomechanical contact with
each other, and that the heat transfer coefficient is a function of the axial coordinate.

We will write the physical and mechanical characteristics of a multilayered cylinder as a single
whole in the form [1]

1, 0 (1.1)
P(")=P1+Z(Pkﬂ—'Pk)S(r—“rk)’ S(z)= 0, 220
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Here S(x) is the Heaviside function [2], r, ps are the outer radius and the characteristic of the
kth layer, respectively and n is the number of layers. Here and henceforth, unless otherwise stated,
summation is carried out over k fromk =1tok=n-1.

The heat conduction equation of the inhomogeneous body in question has the form [1]

i @ at i a3
g (MO ] 340 g =0 (12)
where the thermal conductivity A'(r) is given by formula (1.1).

Using reasoning analogous to that in [1] and taking into account the relation between the
generalized and classical derivative and the conditions of ideal thermal contact

t lrar“o =1 lr=rk—o’ ot/or ]r=rk+0 = Kyot/or ]r=r;;-o (13)
we obtain the following relation from (1.2) [3(x) is the delta function]:
At — D (3t/or lr=ryto = 0t/0r |y—-,—0) 8 (r — 1) =0 (1.4)
_ a1 8 Ca Ay
b=t tam K==
k+1

Taking into account the second condition of (1.3), we can transform the equation to the form
At 4+ X (1 —K>) 0t/0r |rer 0 8(r —13) =0 (1.5)

Equation (1.5) is equivalent to the equation of heat conduction for each layer and conditions of
ideal thermal contact. Indeed,

t(ryz) =t (r2) + Stgsr (s 2) — tx (1, 2)} S (r — 1)

where t,(r, z) is the temperature of the kth layer of the cylinder.
Defining the generalized derivative functions ¢(r, z) as in [2] and substituting them into Eq. (1.5),
we obtain

Atl + b [Atk+1 — Atk] h (?' —_ I"k) -+ 2 ([ﬂt/ar 'r=,~k+o —
— K *at/or 'r=rk—o] 8(r—ry) + [ten |r=r,‘+o — b lr=rk~o] [r8(r—ry) +
+8(r—r)y =0
From this it follows that [3]

Aty =0 for ro,<r<rg
tk+l 'rnrk+o = tk ’r=rk—0’ ot 'kﬂ/at 'rzrkq.o = Kk’"atk/artr=rk—o

Analogous arguments and substitution of the known Duhamel-Neumann relations [4] into the
equations of equilibrium yield the following system of equations:

o hp (P %) b
Aur_ = A+ 2u F= Rl 536: —_ }'+2§L_BT+
1 du
+ EM{Z (pk“‘ -—"k) '5;’: + (kkﬂ—‘)ﬁk)e—-— (16)

— (Bysa —Bx) t} L='k‘°§ (r—ry=0
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A a a9 du du
Bu, + P S B2 ZVﬁl’{#ﬂ“—rz’ }“’“’k):o
ou u ou, Ppeyy — 1
e=Gr+ Tt B=a'(Bh+2), ¢ =

Bgsr

Here u,, u, are the radial and axial displacements, respectively, \, u, o' are the Lamé coefficients
and temperature coefficient of linear expansion of the form (1.1).
We can also show that system (1.6) is equivalent to the system of equations of equilibrium in
terms of displacements for every layer and conditions of ideal thermomechanical contact.
Note that Eq. (1.5) and system (1.6) can also be obtained using the associative, non-
communicative productt
[@8E—a=f@+0)8—a

8(—a)f(e) =f(a—0)6(—a) (1.7)

and the rules of generalized differentiation of a product

[f (@) g @ =[(@) g (@) + [ (2) g (2) (1.8)

where f(x ), g (x) are functions that are sufficiently smooth over the whole region in question except
a finite number of points, all of them with first-order discontinuities.

2. THE THERMAL STRESS STATE OF A MULTILAYER CYLINDER

In order to determine the temperature field and displacements caused by it, we will use Eq. (1.5)
and system (1.6) with the following boundary conditions:

Ayt Bt/or + o (z)(t — t. (z)) = Owhenr = r,
2.1
t = oo when r=20; ¢, 9t/0z— 0 when z - oo
O, = 0,;, = 0 when r = r; 4, = o0, U, 3% oo whenr = 0 (2.2)
Here ¢.(z) is the temperature of the surrounding medium, «(z) is the heat transfer coefficient,
and o,, and o,, are the normal and shear stresses.

Representing the heat transfer coefficient in the form a(z) = a;+ag(z) and using Green’s

function [5], we obtain the solution of problem (1.5), (2.1)

(=]

t(r2)=\ My(zn)T (r,m)dn (2.3)

]

Mye ) =7 § [@EOLEQ—a@trmD]cosnz—1)dL

T (rom) = Lo () — 2 (1 — Ki*) ricbo.o (v 7)) Hi, xS (r —13)

A= xnt"]Hi,n + alH(t), n
k—~1

Hé, k= Ii(nrk) —M 2_1 (1 - K'inl') rmlpi,o (rlﬁ rm) Hi'm
Vi, (@, y) = I; (na) K; (ny) + (—1)* MK, (n2) I; (ny)

+Protsyuk B. V., Temperature fields and stresses in cylindrical multilayer bodies. Candidate dissertation, L'vov, 1983.
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Here I;i(x), K;(x) are modified Bessel functions of order j and ¢(r,, z) is the solution of the

mteoml equatmn
o«

t(rn2) =\ My(zm) B} ndn
0

The constant o, lies within the range of variation of a(z). To solve problem (1.6), (2.2), we will
express u,, u, in terms of the thermoelastic displacement potential

u, =u -+ o®/or, u, = v + dD/9z (2.9)

and seek the functions ®, u, v in the form

oo

o=\ Mz o, mdn

=SM1(z,n>U<r,n>dn, v={ My@z )V mdn 2.5)
0
My =g § EQLO—a®trnDIsinnE—1d

After substituting expressions (2.3)-(2.5) into (1.6), (2.2) and multiplying the first equation of
(1.6) on the left by (A +2p)/j. we obtain, in accordance with (1.7), the equation for determining ¢:

L, = bT, b = B/(h + 2p) (2.6)

and, respectively, a system of equations and boundary conditions for determining U, V:

LU+ "+" & L F=0, LV — *j" e + Fy=0 2.7)
n — 1 dw
T T e= e e @8)
dav

5 — W= 2n—when r=r,; Uskoo,Vzkc0o when r=0

where
d 1
Ly=73~ dr‘ +T =0 Li=L— 3-—-—-+ +r|V
- Apy —A
Fi(r, n)———ZZ WOHES (r—ry), =22
Fy(rim)=ZyHPS (r — )
; {— "f __“____.
r(2) _ 1 r2(8) av
B = —nefore, BO—=(Gr—nU—20-3 )|,

Solving Eq. (2.6) we obtain
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n—1
9 )= L1 () =y Y {bmis — bw) P (o 1) +
ms=1
n—1
+ (0 — KNl m [y (P T + Y Gea—B) fa (1) |}
J=m41

fi (r, rm):= [Ty (rm) $o,0 (ry Tm) + Iy (7m) $o,q (75 )] S (1 — 1)
fo (7y rmy 1) = [MPy, o (Fy Tm) — 072 (P, 0 (22 Tm) $o,0 (v 1) +
F P10 (ris Tm) $o,1 (7 TS (r — 1)

After some reduction using the rule (1.8) and the product (1.7), we reduce the system of
equations (2.7) to the following system:

A 42 1 d(L,V aF
U= Mp"n},[ (CoF) 1. 2 ’+F3]+ + (2.10)

A dF ar
'L0$V=—[;‘_;_}-2l; ( 1+——+1’IF2)+L0F2+ s+——+2p‘nF4]

Here

Fy(ry)=ZyPHPS (r — i), Fo(rsm) =nZvPv B8 (r — ry)

HY = ( _3;_ + nU) (3) Mesr M @ __ Ky

reary ’ i = T B Tr W T (2.11)

The solution of the second equation of system (2.10) bounded at r = 0, has the form (c,, ¢, are
unknown constants)

V =12 [(rbra(rsx) Py — %o (s ') P?’) S(r—ry)—
— o (1 o 1) PT+ exdo (07) + ear Ty () 2.12)

1
PY =ry B o ™EH™ (i1 =1,3), PP = PP+ 290HY

m=0

(4)

1 4 2 3 4 (4)
o = mka) ( ’\’k+1) 'Y( ) (0%2) — (1 ( ))'V( ) ( ), ( ) . —

Using the representation
3
PP = NPy HY = 21 HY )y ey =1 (2.13)
J=1

from (2.12) and the first equation of system (2.10) we find the required relations for U and V. The
quantities HS() are found from the recurrence relations which are obtained by substituting the
representations (2.13) and relations for U, V, into (2.9) and (2.11). The constants ¢;, ¢, obtained
from the boundary conditions (2.8), have the form

¢, = (812823 — 8£13832) / D, ¢y = (813821 — gas811) / D
1
D = gy1820 — gn1812 81j="%" (Hﬁ,l‘)j 4+ (An/trn) H#.)I)’ 825 = Hg.)J
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As an example for the case when the temperature of the surrounding medium and heat transfer coefficient
vary according to the law

te (2) = 4N (3), @ (2) = a; + (@g — ) N (2)
N (z) = Ya erfc (20 (| z/rn | — 2))

we calculated the temperature field and corresponding temperature stresses in a five-layer cylindrical system for

£ tha th lngts o +: al chorastaricéing
f the thermoelastic and seﬁmetriCax characteristics:

1= 11x 10" N/m?, v, = 0.26, o '=0.25x1075 /K, A\ = 80 W/m K
E, =2.7x 10" N/m?, v; = 0.33, vy’ = 2.6 X 107° 1/K, ;' = 46.1 W/m K
E3=11.1x 101 N/m?, v; = 0.35, a3’ = 1.7x 107> /K, A4 = 393.6 W/m K
E4= Ez, Vg4 =V, 0!.4'—— (12, K4’— )\2
Es= 20 6x 1010 n/ulz, v5 ={0.26, a 5 =1. 1>\’ 1073 VK, }\5' =63 WmK
rn=5x1072m, rn=6x10m,r;=9x10"m, 7, =10"%m, rs=1.4x 1072 m
Here E, is Young’s modulus and vy is Poisson’s ratio of the kth layer.
The solid lines in Figs 1-5 show the results of computations for a variable heat transfer coefficient (a; = 100

Wm?K, a, = 350 W/m?2K), and the dashed lines the case of a constant coefficient (a; = o, = 100 W/m? K)

1 ghan tho Ao daman AF dien a0 — 102 4 wd T S chinnzr thin domaen oo
1 15uu.« 1 SOwWs l.llC ucpcuucnu,c O1 ullllUllDlUlllCDD LCluPCl alUlC v = 1iv ll L() ana r IBD L—J JIIUW LIIC UCPCIIUCII\«C U

dimensionless shear and normal stresses

a
e

D‘io

T =102

rz

q,

o, = 102 0= 102 ;:p (G0 = a.s'Esto)
on p = r/rs for the following values of z/rs = 0 (curves 1) and 2/zs = 3 (curves 2).

From the above graphs it follows that the values of the temperature and the absolute values of the stresses in
a cylinder arc approximately twice as large in the case of a variable heat transfer coefficient, as in the case of a
constant coefficient. When the dimensionless axial coordinate z/rs increases from 0 to 3, the absolute values of
temperature and stresses decrease everywhere except in the interval 0.85<p<1 in which the axial stresses o,
(Fig. 4) and annular (circumferential) stresses o, (Fig. 5) increase; the largest stresses are the axial stresses o in
the first layer, while the largest compressive stresses are the annular (circumferential) stresses at the boundary

hntwrnasm s tlaied e d Facietlhh lawraes
VOLWLCLL LIIC LHIIU dalll 1uUl Ul 1ayTld.
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