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A method of solving the axisymmetric static problem of thermoelasticity based on the use of generalized 

functions is proposed for a multilayered unbounded solid cylinder free of external loads, through whose 

surface convective heat exchange occurs with a variable heat transfer coefficient. 

1. EQUATIONS WITH DISCONTINUOUS AND SINGULAR COEFFICIENTS OF THE TWO- 

DIMENSIONAL STATIC PROBLEM OF THERMOELASTICITY OF MULTILAYER 

CYLINDERS 

CONSIDER a cylinder of circular transverse cross-section, free from external loads, composed of an 

arbitrary number of concentrically distributed layers with different physical and mechanical 

characteristics. The cylinder is heated by convective heat transfer from the surrounding medium of 

variable temperature. We will assume that the cylinders are in ideal thermomechanical contact with 

each other, and that the heat transfer coefficient is a function of the axial coordinate. 

We will write the physical and mechanical characteristics of a multilayered cylinder as a single 

whole in the form [l] 

( 1, s>o 
P(r)= PI + 2(Pk+~-14JS(r--rr), S(z)= o, zGo 

(1.1) 

tPrikZ. Mat. Mekh. Vol. 55, No. 6, pp. 1035-1040, 1991. 
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Here S(x) is the Heaviside function 121, rk, pk are the outer radius and the characteristic of the 

kth layer, respectively and n is the number of layers. Here and henceforth, unless otherwise stated, 
summation is carried out over k from k = 1 to k = n - 1. 

The heat conduction equation of the inhomogeneous body in question has the form [l] 

where the thermal conductivity h’(r) is given by formula (1.1). 
Using reasoning analogous to that in [l] and taking into account the relation between the 

generalized and classical derivative and the conditions of ideal thermal contact 

tl r=q+o = t Ir=rk-o, wi?t Jz”rk+o = K&war Jr’rll_* (1.3) 

we obtain the following relation from (1.2) [S(X) is the delta function]: 

At -2 (at/h jrzrEfO - dt/h I,.=Fk_o) 6 (r - rk) = 0 (1.4) 

A= Ad -g++++-& Kgh=71i_ 
k+l 

Taking into account the second condition of (1.3), we can transform the equation to the form 

At + x (1 --Kkh) 8t/‘& &O 6 (r - rk) = 0 WI 

Equation (1.5) is equivalent to the equation of heat conduction for each layer and conditions of 
ideal thermal contact. Indeed, 

t (r, 2) = tl (f, 2) + 2 [tk+l (rt 2) - tk @P z)] 8 tr - Tk) 

where fk(r, z) is the temperature of the kth layer of the cylinder. 
Defining the generalized derivative functions t(r, z) as in [2] and substituting them into Eq. (lS), 

we obtain 

From this it follows that [3] 

At, = 0 for r-r+ < r < rlr 

tk+l I%-=?k+f, = tk iT=tk-09 atjk+,/at fr=rk+o = Kk’dtk/a+=,,-, 

Analogous arguments and substitution of the known Duhamel-Neumann relations [4] into the 
equations of equilibrium yield the following system of equations: 

2 @k+l- pk) $f(hk+l-hk)e- (1.6) 

,.zrk_,! tr - rk) = o 
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Here u,., uZ are the radial and axial displacements, respectively, A, t.~, CY’ are the Lame coefficients 
and temperature coefficient of linear expansion of the form (1.1). 

We can also show that system (1.6) is equivalent to the system of equations of equilibrium in 
terms of displacements for every layer and conditions of ideal thermomechanical contact. 

Note that Eq. (1.5) and system (1.6) can also be obtained using the associative, non- 
communicative product? 

f (2) 6 (x - a) = f (a + 0) 6 (2 - a) 

6 (a? - a) f (X) = f (a - 0) 6 (Z - a) (1.7) 

and the rules of generalized differentiation of a product 

v (4 g (41’ = f (4 g’ (4 + f’ (4 g (4 (1.8) 

where f(x), g(x) are functions that are sufficiently smooth over the whole region in question except 
a finite number of points, all of them with first-order discontinuities. 

2. THE THERMAL STRESS STATE OF A MULTILAYER CYLINDER 

In order to determine the temperature field and displacements caused by it, we will use Eq. (1.5) 

and system (1.6) with the following boundary conditions: 

h,’ at/& + a (2) (t - t, (z)) = 0 when r = r, 

t # oo when r = 0; t, &Y&-t 0 when z + +oo (2.1) 
- 

u r+ = o tz = 0 when r = r,; u, # 00, u, # oc when r = 0 (2.2) 

Here t,(z) is the temperature of the surrounding medium, a(z) is the heat transfer coefficient, 
and u, and urr are the normal and shear stresses. 

Representing the heat transfer coefficient in the form (Y(Z) = 0~~ + (~~(2) and using Green’s 
function [5], we obtain the solution of problem (1..5), (2.1) 

t (r, z) = r Ml (z, 7) T (r, 1) drl (2.3) 
0 

ca 

M, (z, 11) = & 1 [a (5) t, (5) - a0 (5) t (rnt CA ~0s rl(z - 5) dC 

+Protsyuk B. V.. Temperature fields and stresses in cylindrical multilayer bodies. Candidate dissertation, L’vov, 1983. 
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Here Zi(x), Ki( x ) are modified Bessel functions of order j and t(rn, z) is the solution of the 
integral equation 

t(r.,s)=r M,(z,rl)&,.dq 
0 

The constant (or lies within the range of variation of o(z). To solve problem (1.6), (2.2), we will 
express u,, u, in terms of the thermoelastic displacement potential 

U, = u + lWf3r, U, = v + awaz (2.4) 

and seek the functions @‘, u, v in the form 

QI=~%(~~)P(r.tl)dr) 
0 

u= ~Ml(z, q)U(r, q) drt, v =f M,(s,?)V(r,‘~)drl 
0 0 

m 

Ma@, rl) =-;;?;r s P(5) Mb--o(6) Wnt CJW rlk - 04 
-on 

(2.5) 

After substituting expressions (2.3)-(2.5) into (1.6), (2.2) and multiplying the first equation of 
(1.6) on the left by (A +2p,)/k we obtain, in accordance with (1.7), the equation for determining cp: 

L,q, = bT, b = b/(h + 2~) (2.6) 

and, respectively, a system of equations and boundary conditions for determining U, V: 

w-i- +++F,=O, L,V-+qis+F,=O (2.7) 

dV 
--$l=2qs when r=r,,; U#w,V#w when r=O 
dr 

where 

(2.9) 

Solving Eq. (2.6) we obtain 
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n-1 

cp (r, 11) = G 4 (~9 - % )I: { (L+I - M r,% try r,) + 
m=l 

+ (1 - Km&) r,fG, m [ bm+Jz (r, r,, r,) + i;’ 
I=,“+1 

(bi+l - bd fa V9 rm9 rt)]} 

fl (r, rd;= IV, (qrm) $o,o (r, rd + 4 b-h) 90,~ (5 rdl S (r - rd 
ia (r, r,, n) = 14~ o (p, rm) - v? ($o,o b-h 4 qo, o (6 r~) + 

+ ho (rl, rm) 90,1 (5 nN1 S (r - rd 

After some reduction using the rule (1.8) and the product (1.7), we reduce the system of 
equations (2.7) to the following system: 

U= A+$ 1 d (LoV 
h3.p 7 dr r -+$+F,]++++~ 

.Jc,*v=-- 
[ *q$++ -$+qF,)+Lo&+~+; --+pF*] 

Here 

F, (r, q) = ZYf)H$% (r - rk), F, (r, IQ = qZy~‘#‘H$% (r - h) 

.H$‘) = 

(2.10) 

(2.11) 

The solution of the second equation of system (2.10) bounded at r = 0, has the form (c, , c2 are 
unknown constants) 

(1) 
v =‘/eZ [(rh(r9 rk) pk -rk$O,Ofrs rk)@?) S(r-rk)- 

-ti2(r9 rk9 rk) &?I +- clzO(qr) + %rb (v) (2.12) 

pt’ = rk i &+m)H$i+m) (i = 1, 3), pf’ = p(hl) + 2y’kl’H’,8’ 
m=o 

ok 
(1) = 43) =(i - y#)y(kl), #' = (1 - y~~I)yp-y(k), o(k) = y&-- yf' 

Using the representation 

(2.13) 

from (2.12) and the first equation of system (2.10) we find the required relations for U and V. The 
quantities @ii are found from the recurrence relations which are obtained by substituting the 
representations (2.13) and relations for U, V, into (2.9) and (2.11). The constants cl, c2 obtained 
from the boundary conditions (2.8), have the form 

cl = @lag,, - g,,g,,) / D, c, = k,aga, - gaagll) / D 
D = gl,g,, - gslg12, glj =+ (Hi% + (Lhn) H!?“,)~ gu = Hk?‘!I 
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As an example for the case when the temperature of the surrounding medium and heat transfer coefficient 
vary according to the law 

t, (2) = toAr (a), a (2) = a, + (as - 1x1) N (2) 
iv (z) = ‘/a erfc (20 (1 z/r,, 1 - 2)) 

we calculated the temperature field and corresponding temperature stresses in a five-layer cylindrical system for 
the following values of the thermoelastic and geometrical characteristics: 

El = 11 x 10” N/m’, u1 = 0.26, atf = 0.25 X 1O-5 l/K, Ar’ = 80 W/m K 
E, = 2.7 x 10” N/m*, u2 = 0.33, vi = 2.6 x lo-’ UK, Ai = 46.1 W/m K 

E3 = 11.1 x 10” N/m*, u3 = 0.35, as’ = 1.7 x lo-’ l/K, X3’ = 393.6 W/m K 
E4=E2,vq=v2,~Yqf=a2f,h4’=Xzf 

Es = 20.6 x 10” N/m*, vs = 0.26, as’ = 1.1 X lo-’ l/K, hs’ = 6.3 W/m K 
rl = 5 x 10e3 m, r, = 6 x 10e3 m, r3 = 9 X 10m3 m, r-4 = lo-’ m, r, = 1.4 X 10m2 m 

Here Ek is Young’s modulus and vk is Poisson’s ratio of the kth layer. 
The solid lines in Figs l-5 show the results of computations for a variable heat transfer coefficient (a1 = 100 

W/m* K, a2 = 350 W/m* K), and the dashed lines the case of a constant coefficient (al = a2 = 100 W/m* K). 
Figure 1 shows the dependence of dimensionless temperature 0 = lo* t/f0 and Figs 2-5 show the dependence of 
dimensionless shear and normal stresses 

u u cl 

= 101 2, ur=~O~---$, u,=ioa-$v %(P 
t I‘L 00 

crq = iO’- 
00 (uo = as 

t 
&to) 

on p = r/r5 for the following values of z/rs = 0 (curves 1) and z/z, = 3 (curves 2). 
From the above graphs it follows that the values of the temperature and the absolute values of the stresses in 

a cylinder are approximately twice as large in the case of a variable heat transfer coefficient, as in the case of a 
constant coefficient. When the dimensionless axial coordinate z/rs increases from 0 to 3, the absolute values of 
temperature and stresses decrease everywhere except in the interval 0.85 < p < 1 in which the axial stresses uz 
(Fig. 4) and annular (circumferential) stresses uq (Fig. 5) increase; the largest stresses are the axial stresses u, in 
the first layer, while the largest compressive stresses are the annular (circumferential) stresses at the boundary 
between the third and fourth layers. 
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